European ASP.NET 4.5 Hosting BLOG

BLOG about ASP.NET 4, ASP.NET 4.5 Hosting and Its Technology - Dedicated to European Windows Hosting Customer

European ASP.NET Core Hosting :: Using Docker to Store ASP.NET Core Kestrel Certificates

clock March 22, 2019 08:48 by author Scott

When working with ASP.Net Core in Docker containers, it can be cumbersome to deal with certificates. While there is a documentation about setting certificate for dev environment, there’s no real guidance on how to make it work when deploying containers in a Swarm for example.
In this article we are going to see how to take advantage of Docker secrets to store ASP.Net Core Kestrel certificates in the context of Docker Swarm.

Hosting the service

First of all, we are going to create à Swarm service on our machine that use the sample Asp.Net Core app. The purpose of this article is to make SSL work in the container withoutchanging anything to an existing image.

docker service create --name mywebsite --publish published=8080,target=80,mode=host microsoft/dotnet-samples:aspnetapp

We are creating service mywebsite, publishing only one port 8080 bound to the port 80 in the container using the host mode and using the image microsoft/dotnet-samples:aspnetapp. Please note that you can use others configuration (for example expose port in routing mesh mode).

Preparing the certificate

We need a certificate. It can be created via an external certificate authority but here for the sake of the article, we are going to create a self signed certificate (of course, don’t use this in production). We are using Powershell for this task (you can skip this if you already have a pfx certificate signed by a real CA).

$cert = New-SelfSignedCertificate -DnsName "mywebsite" -CertStoreLocation "cert:\LocalMachine\My"
$password = ConvertTo-SecureString -String "mylittlesecret" -Force -AsPlainText
$cert | Export-PfxCertificate -FilePath c:\temp\mywebsite.pfx -Password $password

Once you have your pfx, we are goind to unprotect it from the password. It might be seem unsecure but when it will be added to the Docker secret store, it will be stored securedly. For this task I will use OpenSSL (not possible with Powerhsell as far as I know). OpenSSL is provided with Git for example.

& 'C:\Program Files\Git\mingw64\bin\openssl.exe' pkcs12 -in c:\temp\mywebsite.pfx -nodes -out c:\temp\mywebsite.pem -passin pass:mylittlesecret
& 'C:\Program Files\Git\mingw64\bin\openssl.exe' pkcs12 -export -in c:\temp\mywebsite.pem -out c:\temp\mywebsite.unprotected.pfx -passout pass:

Now that the pfx is un protected, we can add it to the docker store certificate and display it.

docker secret create kestrelcertificate c:\temp\mywebsite.unprotected.pfx

docker secret ls

ID                          NAME                 DRIVER              CREATED             UPDATED

iapy6rolt7po1mwm9aw6z0qc5   kestrelcertificate                       13 minutes ago      13 minutes ago

Our secret being in the store, you can delete (or store securely somewhere else your pfx).

Making it work

We can now update our service to take in account this secret. When adding a secret to a service, Docker will create a file in a specific directory containing the value of the secret. On Windows it’s c:\programdata\docker\secrets.

Let’s update our service and see what happened inside the container.

docker service update --secret-add kestrelcertificate mywebsite

docker exec 4b51e736ce65 cmd.exe /c dir c:\programdata\docker\secrets

 Volume in drive C has no label.
 Volume Serial Number is 3CBB-E577

 Directory of c:\programdata\docker\secrets

11/15/2018  10:38 PM    <DIR>          .
11/15/2018  10:38 PM    <DIR>          ..
11/15/2018  10:38 PM    <SYMLINK>      kestrelcertificate [C:\ProgramData\Docker\internal\secrets\iapy6rolt7po1mwm9aw6z0qc5]
               1 File(s)              0 bytes
               2 Dir(s)  21,245,009,920 bytes free

We can see that our secret exists and is named kestrelcertificate, as we named it in the command line.

We can therefore update our service to remove the old binding on port 80, replace it with a binding on port 443, tell Kestrel to use this port and finally give Kestrel the path of our secret.
This can be done with only one command:

docker service update --publish-rm published=8080,target=80,mode=host --publish-add published=8080,target=443,mode=host --env-add ASPNETCORE_URLS=https://+:443 --env-add Kestrel__Certificates__Default__Path=c:\programdata\docker\secrets\kestrelcertificate mywebsite

Wait a while that your service update, try to browse and it should work ! Well, actually it should only works on Linux.

Making it work on Windows

If you try to have a look a the logs generated by your service, you should end with something like this.

docker service logs mywebsite

mywebsite.1.uy3vm8txwxec@nmarchand-lt    | crit: Microsoft.AspNetCore.Server.Kestrel[0]
mywebsite.1.uy3vm8txwxec@nmarchand-lt    |       Unable to start Kestrel.
mywebsite.1.uy3vm8txwxec@nmarchand-lt    | Internal.Cryptography.CryptoThrowHelper+WindowsCryptographicException: Unspecified error
mywebsite.1.uy3vm8txwxec@nmarchand-lt    |    at Internal.Cryptography.Pal.CertificatePal.FromBlobOrFile(Byte[] rawData, String fileName, SafePasswordHandle password, X509KeyStorageFlags keyStorageFlags)
mywebsite.1.uy3vm8txwxec@nmarchand-lt    |    at System.Security.Cryptography.X509Certificates.X509Certificate..ctor(String fileName, String password, X509KeyStorageFlags keyStorageFlags)
mywebsite.1.uy3vm8txwxec@nmarchand-lt    |    at System.Security.Cryptography.X509Certificates.X509Certificate2..ctor(String fileName, String password)
mywebsite.1.uy3vm8txwxec@nmarchand-lt    |    at Microsoft.AspNetCore.Server.Kestrel.KestrelConfigurationLoader.LoadCertificate(CertificateConfig certInfo, String endpointName)
mywebsite.1.uy3vm8txwxec@nmarchand-lt    |    at Microsoft.AspNetCore.Server.Kestrel.KestrelConfigurationLoader.LoadDefaultCert(ConfigurationReader configReader)
mywebsite.1.uy3vm8txwxec@nmarchand-lt    |    at Microsoft.AspNetCore.Server.Kestrel.KestrelConfigurationLoader.Load()
mywebsite.1.uy3vm8txwxec@nmarchand-lt    |    at Microsoft.AspNetCore.Server.Kestrel.Core.KestrelServer.ValidateOptions()
mywebsite.1.uy3vm8txwxec@nmarchand-lt    |    at Microsoft.AspNetCore.Server.Kestrel.Core.KestrelServer.StartAsync[TContext](IHttpApplication`1 application, CancellationToken cancellationToken)
mywebsite.1.uy3vm8txwxec@nmarchand-lt    |
mywebsite.1.uy3vm8txwxec@nmarchand-lt    | Unhandled Exception: Internal.Cryptography.CryptoThrowHelper+WindowsCryptographicException: Unspecified error
mywebsite.1.uy3vm8txwxec@nmarchand-lt    |    at Internal.Cryptography.Pal.CertificatePal.FromBlobOrFile(Byte[] rawData, String fileName, SafePasswordHandle password, X509KeyStorageFlags keyStorageFlags)
mywebsite.1.uy3vm8txwxec@nmarchand-lt    |    at System.Security.Cryptography.X509Certificates.X509Certificate..ctor(String fileName, String password, X509KeyStorageFlags keyStorageFlags)
mywebsite.1.uy3vm8txwxec@nmarchand-lt    |    at System.Security.Cryptography.X509Certificates.X509Certificate2..ctor(String fileName, String password)
mywebsite.1.uy3vm8txwxec@nmarchand-lt    |    at Microsoft.AspNetCore.Server.Kestrel.KestrelConfigurationLoader.LoadCertificate(CertificateConfig certInfo, String endpointName)
mywebsite.1.uy3vm8txwxec@nmarchand-lt    |    at Microsoft.AspNetCore.Server.Kestrel.KestrelConfigurationLoader.LoadDefaultCert(ConfigurationReader configReader)
mywebsite.1.uy3vm8txwxec@nmarchand-lt    |    at Microsoft.AspNetCore.Server.Kestrel.KestrelConfigurationLoader.Load()
mywebsite.1.uy3vm8txwxec@nmarchand-lt    |    at Microsoft.AspNetCore.Server.Kestrel.Core.KestrelServer.ValidateOptions()
mywebsite.1.uy3vm8txwxec@nmarchand-lt    |    at Microsoft.AspNetCore.Server.Kestrel.Core.KestrelServer.StartAsync[TContext](IHttpApplication`1 application, CancellationToken cancellationToken)
mywebsite.1.uy3vm8txwxec@nmarchand-lt    |    at Microsoft.AspNetCore.Hosting.Internal.WebHost.StartAsync(CancellationToken cancellationToken)
mywebsite.1.uy3vm8txwxec@nmarchand-lt    |    at Microsoft.AspNetCore.Hosting.WebHostExtensions.RunAsync(IWebHost host, CancellationToken token, String shutdownMessage)
mywebsite.1.uy3vm8txwxec@nmarchand-lt    |    at Microsoft.AspNetCore.Hosting.WebHostExtensions.RunAsync(IWebHost host, CancellationToken token)
mywebsite.1.uy3vm8txwxec@nmarchand-lt    |    at Microsoft.AspNetCore.Hosting.WebHostExtensions.Run(IWebHost host)
mywebsite.1.uy3vm8txwxec@nmarchand-lt    |    at aspnetapp.Program.Main(String[] args) in C:\app\aspnetapp\Program.cs:line 18

We can see a nasty bug of Windows here (Github issue).
What did happen ? If you look closely at the dir command we made in the container, you’ll see that the secret is not really a file but instead a symbolic link to an other file. Unfortunately, Windows is unable to use a certificate that is a symlink. One solution could be to manually read the certificate with File.ReadAllBytes() and pass it to the constructor of X509Certificate. However, it would be against the purpose of this article which is to not modify the Docker image.

We can find a workaround by browsing the Docker documentation which states that the real file containing the secret (which in fact is the target of the symlink) can be found in the path c:\programdata\docker\internal\secrets\<secretid> where secretid is the id of the secret (as shown by docker secret ls).

We can update our service to change the path by updating the environment variable. It now works also on windows!

docker service update --env-rm
Kestrel__Certificates__Default__Path=c:\programdata\docker\secrets\kestrelcertificate --env-add Kestrel__Certificates__Default__Path=c:\programdata\docker\internal\secrets\iapy6rolt7po1mwm9aw6z0qc5 mywebsite

docker logs 7b54cdc42a86

Hosting environment: Production
Content root path: C:\app
Now listening on: https://[::]:443
Application started. Press Ctrl+C to shut down.

Final word

We have seen in this article how to use Docker secrets to store ASP.Net Core Kestrel certificates in our Docker Swarm. However, please keep in mind that the Windows workaround should be used with care as written in the Docker documentation.

Another word also about SSL Offloading : I know that usually the reverse proxy (Nginx, Traefik, etc.) is used to be the SSL termination but sometimes you still want SSL end to end. 



European ASP.NET Core Hosting :: Smart Logging Middleware for ASP.NET Core

clock March 13, 2019 09:44 by author Scott

ASP.NET Core comes with request logging built-in. This is great for getting an app up-and-running, but the events are not as descriptive or efficient as hand-crafted request logging can be. Here is a typical trace from a single GET request to /about:



If the request fails because of an error, you'll see instead:



While these fine-grained events are sometimes useful, they take up storage space and bandwidth, and add noise to the log.

Spreading the information across many events also makes it harder to perform some analyses, for example, the HTTP method and elapsed time are on different events, making it hard to separate the timings of GET and POST requests to the same RequestPath.

In production we want:

One "infrastructure" event per normal request, with basic HTTP information attached

Extra information to help with debugging if a request fails due to a server-side (5xx) error

The same format and event type for all requests, so that logs from both successful and failed requests can be easily grouped, sorted and analyzed together

Here's the format we're aiming for, expanded so that you can see all of the attached properties:

Instead of five infrastructure events + one application event, just a single infrastructure event is logged. This makes the application's own "Hello" event much easier to spot.

This post includes the full source code for the middleware, so you can take it and modify it to include the information you find most useful.

Step 1: Install and Configure Serilog

ASP.NET Core includes some basic logging providers, but to get the most out of it you'll need to plug in a full logging framework like Serilog. If you haven't done that already, these instructions should have you up and running quickly.

Step 2: Turn off Information events from Microsoft and System

Where Serilog is configured, add level overrides for the Microsoft and System namespaces:

Log.Logger = new LoggerConfiguration() 
    .MinimumLevel.Override("Microsoft", LogEventLevel.Warning)
    .MinimumLevel.Override("System", LogEventLevel.Warning)
    // Other logger configuration

These can be turned back on for debugging when they're needed.

If you're using appsettings.json configuration, check out the level overrides example in the README.

Step 3: Add the SerilogMiddleware class

The SerilogMiddleware class hooks into the request processing pipeline to collect information about the requests:

using Microsoft.AspNetCore.Http; 
using Serilog; 
using Serilog.Events; 
using System; 
using System.Collections.Generic; 
using System.Diagnostics; 
using System.Linq; 
using System.Threading.Tasks;

namespace Datalust.SerilogMiddlewareExample.Diagnostics 
{
    class SerilogMiddleware
    {
        const string MessageTemplate =
            "HTTP {RequestMethod} {RequestPath} responded {StatusCode} in {Elapsed:0.0000} ms";

        static readonly ILogger Log = Serilog.Log.ForContext<SerilogMiddleware>();

        readonly RequestDelegate _next;

        public SerilogMiddleware(RequestDelegate next)
        {
            if (next == null) throw new ArgumentNullException(nameof(next));
            _next = next;
        }

        public async Task Invoke(HttpContext httpContext)
        {
            if (httpContext == null) throw new ArgumentNullException(nameof(httpContext));

            var sw = Stopwatch.StartNew();
            try
            {
                await _next(httpContext);
                sw.Stop();

                var statusCode = httpContext.Response?.StatusCode;
                var level = statusCode > 499 ? LogEventLevel.Error : LogEventLevel.Information;

                var log = level == LogEventLevel.Error ? LogForErrorContext(httpContext) : Log;
                log.Write(level, MessageTemplate, httpContext.Request.Method, httpContext.Request.Path, statusCode, sw.Elapsed.TotalMilliseconds);
            }
            // Never caught, because `LogException()` returns false.
            catch (Exception ex) when (LogException(httpContext, sw, ex)) { }
        }

        static bool LogException(HttpContext httpContext, Stopwatch sw, Exception ex)
        {
            sw.Stop();

            LogForErrorContext(httpContext)
                .Error(ex, MessageTemplate, httpContext.Request.Method, httpContext.Request.Path, 500, sw.Elapsed.TotalMilliseconds);

            return false;
        }

        static ILogger LogForErrorContext(HttpContext httpContext)
        {
            var request = httpContext.Request;

            var result = Log
                .ForContext("RequestHeaders", request.Headers.ToDictionary(h => h.Key, h => h.Value.ToString()), destructureObjects: true)
                .ForContext("RequestHost", request.Host)
                .ForContext("RequestProtocol", request.Protocol);

            if (request.HasFormContentType)
                result = result.ForContext("RequestForm", request.Form.ToDictionary(v => v.Key, v => v.Value.ToString()));

            return result;
        }
    }
}

I've deliberately kept this to a single (somewhat ugly!) source file so that it's easy to copy, paste and modify.

There are a lot of design details and trade-offs involved. You can see that when a request is deemed to have failed, some additional information is attached, including the headers sent by the client, and the form data if any.

Step 4: Add the middleware to the pipeline

In your application's Startup.cs file, you can add the middleware either before or after the outermost exception handling components. If you add it before this, you won't get the full Exception information in any error events, but you will always be able to record the exact status code returned to the client. Adding the middleware into the pipeline inside the exception handling components (i.e., after them in the source code) will provide all exception detail but has to assume that the status code is 500 in this case.

public void Configure(IApplicationBuilder app, IHostingEnvironment env, 
                      ILoggerFactory loggerFactory)
{
    loggerFactory.AddSerilog();

    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
        app.UseBrowserLink();
    }
    else
    {
        app.UseExceptionHandler("/Home/Error");
    }

    app.UseMiddleware<SerilogMiddleware>();

    app.UseStaticFiles();

    app.UseMvc(routes =>
    {
        routes.MapRoute(
            name: "default",
            template: "{controller=Home}/{action=Index}/{id?}");
    });
}

Step 5: Profit!

Now you have a stream of request log events each with paths, status codes, timings, and exceptions:

We've seen how a simple customized logging strategy can not only produce cleaner events, but also reduce the volume of infrastructure log events.



ASP.NET Core Hosting :: How to Upload File using C# | SFTP Server

clock March 4, 2019 07:56 by author Scott

Although there are many Graphical Tools available for sending files to a server using SFTP. But as a developer, we may have a scenario where we need to upload a file to SFTP Serverfrom our Code.

A few days ago a job assigned to me was to develop a Task Scheduler for generating XML files daily on a specific time of the day & send these files on a Remote Server using File Transfer Protocol in a secure way.

In .Net Framework there are many Libraries available for uploading files to another machine using File Transfer Protocol but most of the libraries don’t work with .Net Core. In this Tutorial, we will develop a very simple SFTP client using C# for .Net Core.

Before start let’s have a quick look at SFTP.

What is SFTP?

SFTP stands for SSH File Transfer Protocol or Secure File Transfer Protocol. It is a protocol used to transfer files between remote machines over a secure shell.

 

In almost all cases, SFTP is preferable over FTP because of security features. FTP is not a secure protocol & it should only be used on a trusted network.

Choosing Library for C#

A lot of search & after testing many libraries I finally met with SSH.NET which was working perfectly with .Net Core 2.2 project & the good thing was that It does its job in a very few lines of Code.

So we’ll use SSH.NET

What is SSH.NET?

SSH.NET is an open-source library available at Nuget for .NET to work over SFTP. It is also optimized for parallelism to achieve the best possible performance. It was inspired by Sharp.SSH library which was ported from Java. This library is a complete rewrite using .Net, without any third party dependencies.

Here are the features of SSH.NET: 

Creating Project

I’m in love with VS Code right after its first release so I’m going to use VS Code for creating project to upload/transfer a file to a remote server using SFTP.

Create a console application using this command

dotnet new console

Installing SSH.NET

I won’t recommend you to install the latest version of SSH.NET. It has a bug, it can be stuck on transferring the file to the remote location.

version 2016.0.0 is perfect. 

run this command to install the library from NuGet

using package manager

Install-Package SSH.NET -Version 2016.0.0

or using .Net CLI

dotnet add package SSH.NET --version 2016.0.0

Code

Finally, It’s time to create a class for SFTP Client Code.

Create a file with the name as “SendFileToServer” & add the below code

using Renci.SshNet

public static class SendFileToServer
{
// Enter your host name or IP here
private static string host = "127.0.0.1";

// Enter your sftp username here
private static string username = "sftp";

// Enter your sftp password here
private static string password = "12345";
public static int Send(string fileName)
{
var connectionInfo = new ConnectionInfo(host, "sftp", new PasswordAuthenticationMethod(username, password));

// Upload File
using (var sftp = new SftpClient(connectionInfo)){

sftp.Connect();
//sftp.ChangeDirectory("/MyFolder");
using (var uplfileStream = System.IO.File.OpenRead(fileName)){
sftp.UploadFile(uplfileStream, fileName, true);
}
sftp.Disconnect();
}
return 0;
}
}

Now you can call this Method to transfer a file to SFTP Server like this

SendFileToServer.Send("myFile.txt");

“myFile.txt” is the name of the file which should be located in your project root directory. 



European ASP.NET Core Hosting :: How to Use HTTP-REPL tool to test WEB API in ASP.NET Core 2.2

clock February 26, 2019 07:37 by author Scott

Today there are no tools built into Visual Studio to test WEB API. Using browsers, one can only test http GET requests. You need to use third-party tools like PostmanSoapUIFiddler or Swagger to perform a complete testing of the WEB API. In ASP.NET Core 2.2, a CLI based new dotnet core global tool named “http-repl” is introduced to interact with API endpoints. It’s a CLI based tool which can list down all the routes and execute all HTTP verbs. In this post, let’s find out how to use HTTP-REPL tool to test WEB API in ASP.NET Core 2.2.

HTTP-REPL Tool to test WEB API in ASP.NET Core 2.2

The “http-repl” is a dotnet core global tool and to install this tool, run the following command. At the time of writing this post, the http-repl tool is in preview stage
and available for download at 
dotnet.myget.org

dotnet tool install -g dotnet-httprepl --version 2.2.0-* --add-source https://dotnet.myget.org/F/dotnet-core/api/v3/index.json

Once installed, you can verify the installation using the following command.

dotnet tool list -g



Now the tool is installed, let’s see how we can test the WEB API. For this tool to work properly, the prerequisite here is that your services will have Swagger/OpenAPI available that describes the service.

We need to add this tool to web browser list so that we can browse the API with this tool. To do that, follow the steps given in the below image.



The location of HTTP-REPL tool executable is "C:\Users\<username>\.dotnet\tools". Once added, you can verify it in the browser list.

Run the app (make sure HTTP REPL is selected in browser list) and you should see a command prompt window. As mentioned earlier, it’s a CLI based experience so you can use commands like dir, ls, cdand cls. Below is an example run where I start-up a Web API.

You can use all the HTTP Verbs, and when using the POST verb, you should set a default text editor to supply the JSON. You can set Visual Studio Code as default text editor using the following command.

pref set editor.command.default "C:\Program Files (x86)\Microsoft VS Code\Code.exe"

Once the default editor is set, and you fire POST verb, it will launch the editor with the JSON written for you. See below GIF.

You can also navigate to the Swagger UI from the command prompt via executing ui command. Like,

Similarly, you can also execute the DELETE and PUT. In case of PUT command, you should use following syntax and in the default code editor, supply the updated data.

> delete 2 //This would delete the record with id 2.
>
> put 2010 -h "Content-Type: application/json"

When you fire PUT command, the behavior is same as the POST verb. The text editor will open with the JSON written for you, just supply the updated value to execute PUT command.

Pros and Cons

Pros

  • Helps in debugging WEB API
  • Fast and quickly switch between API endpoints
  • Descriptive error response shown

Cons:

  • Dependency on Swagger/Open API specification
  • Not as informative as UI tools

After playing with this for a while, I strongly feel it’s command line version of the Swagger UI and it would be very handy when there are many API endpoints. You can easily navigate or switch between the APIs and execute it. 



European ASP.NET Core Hosting :: How to Use IOptions for ASP.NET Core 2 Configuration

clock February 7, 2019 11:48 by author Scott

Almost every project will have some settings that need to be configured and changed depending on the environment, or secrets that you don't want to hard code into your repository. The classic example is connection strings and passwords etc which in ASP.NET 4 were often stored in the <applicationSettings> section of web.config.

In ASP.NET Core this model of configuration has been significantly extended and enhanced. Application settings can be stored in multiple places - environment variables, appsettings.json, user secrets etc - and easily accessed through the same interface in your application. Further to this, the new configuration system in ASP.NET allows (actually, enforces) strongly typed settings using the IOptions<> pattern.

While working on an RC2 project the other day, I was trying to use this facility to bind a custom Configuration class, but for the life of me I couldn't get it to bind my properties. Partly that was down to the documentation being somewhat out of date since the launch of RC2, and partly down to the way binding works using reflection. In this post I'm going to go into demonstrate the power of the IOptions<> pattern, and describe a few of the problems I ran in to and how to solve them.

Strongly typed configuration

 

In ASP.NET Core, there is now no default AppSettings["MySettingKey"] way to get settings. Instead, the recommended approach is to create a strongly typed configuration class with a structure that matches a section in your configuration file (or wherever your configuration is being loaded from):

public class MySettings
{
    public string StringSetting { get; set; }
    public int IntSetting { get; set; }
}

Would map to the lower section in the appsettings.json below.

{
  "Logging": {
    "IncludeScopes": false,
    "LogLevel": {
      "Default": "Debug",
      "System": "Information",
      "Microsoft": "Information"
    }
  },
  "MySettings": {
    "StringSetting": "My Value",
    "IntSetting": 23
  }
}

Binding the configuration to your classes

 

In order to ensure your appsettings.json file is bound to the MySettings class, you need to do 2 things.

1. Setup the ConfigurationBuilder to load your file

2. Bind your settings class to a configuration section

When you create a new ASP.NET Core application from the default templates, the ConfigurationBuilder is already configured in Startup.cs to load settings from environment variables, appsettings.json, and in development environments, from user secrets:

public Startup(IHostingEnvironment env)
{
    var builder = new ConfigurationBuilder()
        .SetBasePath(env.ContentRootPath)
        .AddJsonFile("appsettings.json", optional: true, reloadOnChange: true)
        .AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true);

    if (env.IsDevelopment())
    {
        builder.AddUserSecrets();
    }

    builder.AddEnvironmentVariables();
    Configuration = builder.Build();
}

If you need to load your configuration from another source then this is the place to do it, but for most common situations this setup should suffice. There are a number of additional configuration providers that can be used to bind other sources, such as xml files for example.

In order to bind a settings class to your configuration you need to configure this in the ConfigureServices method of Startup.cs:

public void ConfigureServices(IServiceCollection services)
{
    services.Configure<MySettings>(options => Configuration.GetSection("MySettings").Bind(options));
}

Note: The syntax for model binding has changed from RC1 to RC2 and was one of the issues I was battling with. The previous method, using services.Configure<MySettings>(Configuration.GetSection("MySettings")), is no longer available

You may also need to add the configuration binder package to the dependencies section of your project.json:

"dependencies": {
  ...
  "Microsoft.Extensions.Configuration.Binder": "1.0.0-rc2-final"
  ...
}

Using your configuration class

 

When you need to access the values of MySettings you just need to inject an instance of an IOptions<> class into the constructor of your consuming class, and let dependency injection handle the rest:

public class HomeController : Controller
{
    private MySettings _settings;
    public HomeController(IOptions<MySettings> settings)
    {
        _settings = settings.Value
        // _settings.StringSetting == "My Value";
    }
}

The IOptions<> service exposes a Value property which contains your configured MySettings class.

It's important to note that there doesn't appear to be a way to access the raw IConfigurationRoot through dependency injection, so the strongly typed route is the only way to get to your settings.

You can expose the IConfigurationRoot directly to the DI container using services.AddSingleton(Configuration). (Thanks Saša Ćetković for pointing that out!)

Complex configuration classes

 

The example shown above is all very nice, but what if you have a very complex configuration, nested types, collections, the whole 9 yards?

public class MySettings
{
    public string StringSetting { get; set; }
    public int IntSetting { get; set; }
    public Dictionary<string, InnerClass> Dict { get; set; }
    public List<string> ListOfValues { get; set; }
    public MyEnum AnEnum { get; set; }
}

public class InnerClass
{
    public string Name { get; set; }
    public bool IsEnabled { get; set; } = true;
}

public enum MyEnum
{
    None = 0,
    Lots = 1
}

Amazingly we can bind that using the same configure<MySettings> call to the following, and it all just works:

{
  "MySettings": {
    "StringSetting": "My Value",
    "IntSetting": 23,
    "AnEnum": "Lots",
    "ListOfValues": ["Value1", "Value2"],
    "Dict": {
      "FirstKey": {
        "Name": "First Class",
           "IsEnabled":  false
      },
      "SecondKey": {
        "Name": "Second Class"
      }
    }
  }
}

When values aren't provided, they get their default values, (e.g. MySettings.Dict["SecondKey].IsEnabled == true). Dictionaries, lists and enums are all bound correctly. That is until they aren't...

Models that won't bind

 

So after I'd beaten the RC2 syntax change in to submission, I thought I was home and dry, but I still couldn't get my configuration class to bind correctly. Getting frustrated, I decided to dive in to the source code for the binder and see what's going on (woo, open source!).

It was there I found a number of interesting cases where a model's properties won't be bound even if there are appropriate configuration values. Most of them are fairly obvious, but could feasibly sting you if you're not aware of them. I am only going to go into scenarios that do not throw exceptions, as these seem like the hardest ones to figure out.

Properties must have a public Get method

 

The properties of your configuration class must have a getter, which is public and must not be an indexer, so none of these properties would bind:

private string _noGetter;
private string[] _arr;

public string NoGetter { set { _noGetter = value; } }
public string NonPublicGetter { set { _noGetter = value; } }
public string this[int i]
{
    get { return _arr[i]; }
    set { _arr[i] = value; }
}

Properties must have a public Set method...

 

Similarly, properties must have a public setter, so again, none of these would bind:

public string NoGetter { get; }
public string NonPublicGetter { get; private set; }

...Except when they don't have to

 

The public setter is actually only required if the value being bound is null. If it's a simple type like a string or and int, then the setter is required as there's no way to change the value. You can create readonly properties with default values, but they just won't be bound. For properties which are complex types, you don't need a setter, as long as the value has a value at binding time:

public MyInnerClass ComplexProperty { get; } = new MyInnerClass();
public List<string> ListValues { get; } = new List<string>();
public Dictionary<string, string> DictionaryValue1 { get; } = new Dictionary<string,string>();
private Dictionary<string, string> _dict = new Dictionary<string,string>();
public Dictionary<string, string> DictionaryValue2 { get { return _dict; } }

The sub properties of the MyInnerClass object returned by ComplexProperty would be bound, values would be added to the collection in ListValues, and KeyValuePairs would be added to the dictionaries.

Dictionaries must have string keys

 

This is one of the gotchas that got me! While integers, are obviously perfectly valid keys to dictionaries usually, they are not allowed in this case thanks to this snippet in ConfigurationBinder.BindDictionary:

var typeInfo = dictionaryType.GetTypeInfo();

// IDictionary<K,V> is guaranteed to have exactly two parameters
var keyType = typeInfo.GenericTypeArguments[0];
var valueType = typeInfo.GenericTypeArguments[1];

if (keyType != typeof(string))
{
    // We only support string keys
    return;
}

Don't expose IDictionary

 

This is another one that got me accidentally. While coding to interfaces is nice, the model binder uses reflection and Activator.CreateInstance(type) to create the classes to be bound. If your properties are interfaces or abstract then the binder will throw when trying to create them.

If you are exposing your properties as a readonly getter however, then the binder does not need to create the property and you might think the configuration class would bind correctly. And that is true in almost all cases. Unforunately while the binder can bind any properties which are a type that derives from IDictionary<,>, it will not bind an IDictionary<,> property directly. This leaves you with the following situation:

public interface IMyDictionary<TKey, TValue> : IDictionary<TKey, TValue> { }

public class MyDictionary<TKey, TValue>
    : Dictionary<TKey, TValue>, IMyDictionary<TKey, TValue>
{
}

public class MySettings
{
  public IDictionary<string, string> WontBind { get; } = new Dictionary<string, string>();
  public IMyDictionary<string, string> WillBind { get; } = new MyDictionary<string, string>();
}

Our wrapper type IMyDictionary which is really just an IDictionary will be bound, whereas the directly exposed IMyDictionary will not. This doesn't feel right to me and I've raised an issue with the team.

Make properties Implementing ICollection also expose an Add method

 

Types deriving from ICollection<> are automatically bound in the same way as dictionaries, however the ICollection<> interface exposes no methods to add an object to the collection, only methods for enumerating and counting. It may seem strange then that it is this interface the binder looks for when checking whether a property can be bound.

If a property exposes a type that implements ICollection<> (and is not an ICollection<> itself, as for IDictionary above, though that makes sense in this case), then it is a candidate for binding. In order to add an item to the collection, reflection is used to invoke an Add method on the type:

var addMethod = typeInfo.GetDeclaredMethod("Add");
addMethod.Invoke(collection, new[] { item });

If an add method on the exposed type does not exist (e.g. it could be a ReadOnlyCollection<>), then this property will not be bound, but no error will be thrown, you will just get an empty collection. This one feels a little nasty to me, but I guess the common use case is you will be exposing List<> and IList<> etc. Feels like they should be looking for IList<> if that is what they need though!

Summary

 

The strongly typed configuration is a great addition to ASP.NET Core, providing a clean way to apply the Interface Segregation Principle to your configuration. Currently it seems more convoluted to retrieve your settings than tin ASP.NET 4, but I wouldn't be surprised if they add some convenience methods for quickly accessing values in a forthcoming release.

It's important to consider the gotchas described if you're having trouble binding values (and you're not getting an exceptions thrown). Pay particular attention to your collections, as that's where my issues arose.



European ASP.NET Core Hosting :: ASP.NET Core 2.0 MVC Filters

clock January 28, 2019 09:58 by author Scott

The following is tutorial how to run code before and after MVC request pipeline in ASP.NET Core.

Solution

In an empty project update Startup class to add services and middleware for MVC:

        public void ConfigureServices
            (IServiceCollection services)
        {
            services.AddMvc();
        } 

        public void Configure(
            IApplicationBuilder app,
            IHostingEnvironment env)
        {
            app.UseMvc(routes =>
            {
                routes.MapRoute(
                    name: "default",
                    template: "{controller=Home}/{action=Index}/{id?}");
            });
        }

Add the class to implement filter:

    public class ParseParameterActionFilter : Attribute, IActionFilter
    {
        public void OnActionExecuting(ActionExecutingContext context)
        {
            object param;
            if (context.ActionArguments.TryGetValue("param", out param))
                context.ActionArguments["param"] = param.ToString().ToUpper();
            else
                context.ActionArguments.Add("param", "I come from action filter");
        } 

        public void OnActionExecuted(ActionExecutedContext context)
        {
        }
    }

In the Home controller add an action method that uses Action filter:

        [ParseParameterActionFilter]
        public IActionResult ParseParameter(string param)
        {
            return Content($"Hello ParseParameter. Parameter: {param}");
        }

Browse to /Home/ParseParameter, you’ll see:

 

Discussion

Filter runs after an action method has been selected to execute. MVC provides built-in filters for things like authorisation and caching. Custom filters are very useful to encapsulate reusable code that you want to run before or after action methods.

Filters can short-circuit the result i.e. stops the code in your action from running and return a result to the client. They can also have services injected into them via service container, which makes them very flexible.

Filter Interfaces

Creating a custom filter requires implementing an interface for the type of filter you require. There are two flavours of interfaces for most filter type, synchronous and asynchronous:

    public class HelloActionFilter : IActionFilter
    {
        public void OnActionExecuting(ActionExecutingContext context)
        {
            // runs before action method
        } 

        public void OnActionExecuted(ActionExecutedContext context)
        {
            // runs after action method
        }
    } 

    public class HelloAsyncActionFilter : IAsyncActionFilter
    {
        public async Task OnActionExecutionAsync(
            ActionExecutingContext context,
            ActionExecutionDelegate next)
        {
            // runs before action method
            await next();
            // runs after action method
        }
    }

You can short-circuit the filter pipeline by setting the Result (of type IActionResult) property on context parameter (for Async filters don’t call the next delegate):

    public class SkipActionFilter : Attribute, IActionFilter
    {
        public void OnActionExecuting(ActionExecutingContext context)
        {
            context.Result = new ContentResult
            {
                Content = "I'll skip the action execution"
            };
        } 

        public void OnActionExecuted(ActionExecutedContext context)
        { }
    } 

    [SkipActionFilter]
    public IActionResult SkipAction()
    {
       return Content("Hello SkipAction");
    }

For Result filters you could short-circuit by setting the Cancel property on context parameter and sending a response:

        public void OnResultExecuting(ResultExecutingContext context)
        {
            context.Cancel = true;
            context.HttpContext.Response.WriteAsync("I'll skip the result execution");
        } 

        [SkipResultFilter]
        public IActionResult SkipResult()
        {
            return Content("Hello SkipResult");
        }

Filter Attributes

MVC provides abstract base classes that you can inherit from to create custom filters. These abstract classes inherit from Attribute class and therefore can be used to decorate controllers and action methods:

  • ActionFilterAttribute
  • ResultFilterAttribute
  • ExceptionFilterAttribute
  • ServiceFilterAttribute
  • TypeFilterAttribute

Filter Types

There are various type of filters that run at different stages of the filter pipeline. Below a figure from official documentation illustrates the sequence:

 

 

Authorization

 

 

This is the first filter to run and short circuits request for unauthorised users. They only have one method (unlike most other filters that have Executing and Executed methods). Normally you won’t write your own Authorization filters, the built-in filter calls into framework’s authorisation mechanism.

Resource

They run before model binding and can be used for changing how it behaves. Also they run after the result has been generated and can be used for caching etc.

Action

They run before and after the action method, thus are useful to manipulate action parameters or its result. The context supplied to these filters let you manipulate the action parameters, controller and result.

Exception

They can be used for unhandled exception before they’re written to the response. Exception handling middleware works for most scenarios however this filter can be used if you want to handle errors differently based on the invoked action.

Result

They run before and after the execution of action method’s result, if the result was successful. They can be used to manipulate the formatting of result.

Filter Scope

Filters can be added at different levels of scope: Action, Controller and Global. Attributes are used for action and controller level scope. For globally scoped filters you need to add them to filter collection of MvcOptions when configuring services in Startup:

            services.AddMvc(options =>
            {
                             // by instance
                options.Filters.Add(new AddDeveloperResultFilter("Tahir Naushad")); 

                // by type
                options.Filters.Add(typeof(GreetDeveloperResultFilter));
            });

Filters are executed in a sequence:

1. The Executing methods are called first for Global > Controller > Action filters.

2. Then Executed methods are called for Action > Controller > Global filters.

Filter Dependency Injection

In order to use filters that require dependencies injected at runtime, you need to add them by Type. You can add them globally (as illustrated above), however, if you want to apply them to action or controller (as attributes) then you have two options:

ServiceFilterAttribute

This attributes retrieves the filter using service container. To use it:

Create a filter that uses dependency injection:

    public class GreetingServiceFilter : IActionFilter
    {
        private readonly IGreetingService greetingService; 

        public GreetingServiceFilter(IGreetingService greetingService)
        {
            this.greetingService = greetingService;
        } 
        public void OnActionExecuting(ActionExecutingContext context)
        {
            context.ActionArguments["param"] =
                this.greetingService.Greet("James Bond");
        } 

        public void OnActionExecuted(ActionExecutedContext context)
        { }
    }

Add filter to service container:

services.AddScoped<GreetingServiceFilter>();

Apply it using ServiceFilterAttribute:

[ServiceFilter(typeof(GreetingServiceFilter))]
public IActionResult GreetService(string param)

TypeFilterAttribute

This attributes doesn’t need registering the filter in service container and initiates the type using ObjectFactory delegate. To use it:

Create a filter that uses dependency injection:

    public class GreetingTypeFilter : IActionFilter
    {
        private readonly IGreetingService greetingService; 

        public GreetingTypeFilter(IGreetingService greetingService)
        {
            this.greetingService = greetingService;
        } 

        public void OnActionExecuting(ActionExecutingContext context)
        {
            context.ActionArguments["param"] = this.greetingService.Greet("Dr. No");
        } 

        public void OnActionExecuted(ActionExecutedContext context)
        { }
    }

Apply it using TypeFilterAttribute:

[TypeFilter(typeof(GreetingTypeFilter))]
public IActionResult GreetType1(string param)

You could also inherit from TypeFilterAttribute and then use without TypeFilter:

public class GreetingTypeFilterWrapper : TypeFilterAttribute
{
   public GreetingTypeFilterWrapper() : base(typeof(GreetingTypeFilter))
   { }


[GreetingTypeFilterWrapper]
public IActionResult GreetType2(string param)
 



European ASP.NET Core Hosting - HostForLIFE.eu :: Cookie Authentication and Policy Based Authorization in ASP.NET Core

clock February 6, 2017 10:23 by author Scott

This is the first part of the series of articles I'll be covering about ASP.NET Core Security. We're going to start off with cookie based authentication and build our way up to configuring policy based authorization.

As part of the ASP.NET Core security, there is a new richer policy based authorization that we can use to authorize against the claims in user's possession.

Let's build an example MVC application to demonstrate the concepts. In our scenario, we'll demand users to be authenticated and have Read claim to view the home page of our application.

I am using Visual Studio 2015 Pro Edition w/Update 3 (you should also be able to use the free community edition).

1. Create a new ASP.NET Core Web Application


2. Select the Empty Template


3. We need to add the required nuget packages to configure authorization, cookie authentication, and the mvc middleware. Bring up the project.jsonfile, add the following under the dependencies section.

"Microsoft.AspNetCore.Authorization": "1.0.0"
"Microsoft.AspNetCore.Authentication.Cookies": "1.0.0"
"Microsoft.AspNetCore.Mvc": "1.0.0"


4. Once you save the project.json file, Notice Visual Studio installs the missing nuget packages automatically. Next, bring up the Startup.cs where we'll configure the middleware we just included in our project.

5. In Configure method, add the following authentication middleware configuration;

app.UseCookieAuthentication(new CookieAuthenticationOptions
    {
        AuthenticationScheme = "Cookies",
        LoginPath = new StringPath("/Account/Login"),
        AccessDeniedPath = new StringPath("/Home/Forbidden"),
        AutomaticAuthenticate = true,
        AutomaticChallenge = true
    });

Here we're using the Cookie authentication, defining our LoginPath, where users will be redirected for authentication, and AccessDeniedPath when the user is not authorized. AutomaticAuthenticate flag indicates that the middleware should run on every request and attempt to validate and reconstruct any serialized principal it created. AutomaticChallenge flag indicates that the middleware should redirect the browser to the LoginPath or the AccessDeniedPath when the authorization fails (there are various other configuration options, however this the bare minimum we need for this example).

Next, we'll configure the requirements for the ReadPolicy. The policy will demand the user to be authenticated and have the Read claim in order access the required resource(s). Depending on your authorization logic, you can setup your policy to require additional claims.

public void ConfigureServices(IServiceCollection services) 
{
    services.AddAuthorization(options =>
    {
        options.AddPolicy("ReadPolicy", policyBuilder =>
        {
            policyBuilder.RequireAuthenticatedUser()
                .RequireAssertion(context => context.User.HasClaim("Read", "true"))
                .Build();
        });
    });
}

6. Finally we need to add the mvc middleware configuration.

app.UseMvc(builder =>
    {
        builder.MapRoute("default", "{controller=Home}/{action=index}/{id?}");
    });

Let's add couple of controllers so that we can test the login and the policy we've created. Create AccountController for user login and HomeController where we'll apply the ReadPolicy.

7. In the AccountController.cs add the following actions to login user;

[HttpGet]
public IActionResult Login(string returnUrl) 
{
    ViewData["ReturnUrl"] = returnUrl;
    return View();
}

8. Add a simple Login.cshtml view under the Views/Account folder (create the folder structure if it doesn't exists) where the user can login to the application.

<form asp-action="Account/Login" method="post" 
      asp-route-returnUrl="@ViewData["ReturnUrl"]">
    <div>
        <label>Username</label>
        <input type="text" name="username" />
    </div>
    <div>
        <label>Password</label>
        <input type="password" name="password" />
    </div>
    <div><button>Login</button></div>
</form> 

In the POST login action, we have a simple verification; The username and the password must match in order to authenticate the user (Obviously you wouldn't do this in a real production application but for our demo purposes this is fine). If they match, we then create a set of claims, the claims identity, and the claims principle that represents the authenticated user. Then, we sign in the user (means we issue a cookie to the user which contains the set of claims we've created) and redirect back to the resource that was requested for access.

[HttpPost]
public async Task<IActionResult> Login(string username, string password, string returnUrl) 
{
    if (username == password)
    {
        var claims = new List<Claim>
        {
            new Claim("Read", "true"),
            new Claim(ClaimTypes.Name, "ayayalar"),
            new Claim(ClaimTypes.Sid, "12345")
        };

        var claimsIdentity = new ClaimsIdentity(claims, "password");
        var claimsPrinciple = new ClaimsPrincipal(claimsIdentity);

        await HttpContext.Authentication.SignInAsync("Cookies", claimsPrinciple);

        if (Url.IsLocalUrl(returnUrl))
        {
            return Redirect(returnUrl);
        }

        return Redirect("~/");
    }

    return View();
}

9. Add the following action to the HomeController.cs;

[Authorize(Policy = "ReadPolicy")]
public IActionResult Index() 
{
    return View();
}

Note that we passed the ReadPolicy to the authorization attribute. The user must be authenticated and have a Read claim to have access. Otherwise, they'll be forwarded to the Forbidden page as we specified in the authentication middleware configuration.

The Index.cshtml view for the home page (can be as simple as one line of code) under Views/Home folder;

<h1>Access Granted</h1>

We should be able to test our changes at this point. Once you run the application, you'll be redirected to the login page since you're not authenticated (notice the return url in the query string is set automatically by the framework). Upon successfully submitting your credentials, you will be authorized and redirected to the home page.

For testing purposes, try removing the Read claim we've added in the Loginaction, rebuild your solution and restart the application, even if the user can login successfully, authorization will be denied and the user will be redirected to the Forbidden page.



European ASP.NET Core 1.0 Hosting - HostForLIFE.eu :: How to Publish Your ASP.NET Core in IIS

clock November 3, 2016 09:27 by author Scott

When you build ASP.NET Core applications and you plan on running your applications on IIS you'll find that the way that Core applications work in IIS is radically different than in previous versions of ASP.NET.

In this post I'll explain how ASP.NET Core runs in the context of IIS and how you can deploy your ASP.NET Core application to IIS.

Setting Up Your IIS and ASP.NET Core

The most important thing to understand about hosting ASP.NET Core is that it runs as a standalone, out of process Console application. It's not hosted inside of IIS and it doesn't need IIS to run. ASP.NET Core applications have their own self-hosted Web server and process requests internally using this self-hosted server instance.

You can however run IIS as a front end proxy for ASP.NET Core applications, because Kestrel is a raw Web server that doesn't support all features a full server like IIS supports. This is actually a recommended practice on Windows in order to provide port 80/443 forwarding which kestrel doesn't support directly. For Windows IIS (or another reverse proxy) will continue to be an important part of the server even with ASP.NET Core applications.

Run Your ASP.NET Core Site

To run your ASP.NET Core site, it is quite different with your previous ASP.NET version. ASP.NET Core runs its own web server using Kestrel component. Kestrel is a .NET Web Server implementation that has been heavily optimized for throughput performance. It's fast and functional in getting network requests into your application, but it's 'just' a raw Web server. It does not include Web management services as a full featured server like IIS does.

If you run on Windows you will likely want to run Kestrel behind IIS to gain infrastructure features like port 80/443 forwarding via Host Headers, process lifetime management and certificate management to name a few.

ASP.NET Core applications are standalone Console applications invoked through the dotnet runtime command. They are not loaded into an IIS worker process, but rather loaded through a native IIS module called AspNetCoreModule that executes the external Console application.

Once you've installed the hosting bundle (or you install the .NET Core SDK on your Dev machine) the AspNetCoreModule is available in the IIS native module list:

The AspNetCoreModule is a native IIS module that hooks into the IIS pipeline very early in the request cycle and immediately redirects all traffic to the backend ASP.NET Core application. All requests - even those mapped to top level Handlers like ASPX bypass the IIS pipeline and are forwarded to the ASP.NET Core process. This means you can't easily mix ASP.NET Core and other frameworks in the same Site/Virtual directory, which feels a bit like a step back given that you could easily mix frameworks before in IIS.

While the IIS Site/Virtual still needs an IIS Application Pool to run in, the Application Pool should be set to use No Managed Code. Since the App Pool acts merely as a proxy to forward requests, there's no need to have it instantiate a .NET runtime.

The AspNetCoreModule's job is to ensure that your application gets loaded when the first request comes in and that the process stays loaded if for some reason the application crashes. You essentially get the same behavior as classic ASP.NET applications that are managed by WAS (Windows Activation Service).

Once running, incoming Http requests are handled by this module and then routed to your ASP.NET Core application.

So, requests come in from the Web and int the kernel mode http.sys driver which routes into IIS on the primary port (80) or SSL port (443). The request is then forwarded to your ASP.NET Core application on the HTTP port configured for your application which is not port 80/443. In essence, IIS acts a reverse proxy simply forwarding requests to your ASP.NET Core Web running the Kestrel Web server on a different port.

Kestrel picks up the request and pushes it into the ASP.NET Core middleware pipeline which then handles your request and passes it on to your application logic. The resulting HTTP output is then passed back to IIS which then pushes it back out over the Internet to the HTTP client that initiated the request - a browser, mobile client or application.

The AspNetCoreModule is configured via the web.config file found in the application's root, which points a the startup command (dotnet) and argument (your application's main dll) which are used to launch the .NET Core application. The configuration in the web.config file points the module at your application's root folder and the startup DLL that needs to be launched.

Here's what the web.config looks like:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
  <!--
    Configure your application settings in appsettings.json. Learn more at http://go.microsoft.com/fwlink/?LinkId=786380
  -->
  <system.webServer>
    <handlers>
      <add name="aspNetCore" path="*" verb="*"
        modules="AspNetCoreModule" resourceType="Unspecified" />
    </handlers>
    <aspNetCore processPath="dotnet"
                arguments=".\AlbumViewerNetCore.dll"
                stdoutLogEnabled="false"
                stdoutLogFile=".\logs\stdout"
                forwardWindowsAuthToken="false" />
  </system.webServer>
</configuration>

You can see that module references dotnetexe and the compiled entry point DLL that holds your Main method in your .NET Core application.

IIS is Recommended!

We've already discussed that when running ASP.NET Core on Windows, it's recommended you use IIS as a front end proxy. While it's possible to directly access Kestrel via an IP Address and available port, there are number of reasons why you don't want to expose your application directly this way in production environments.

First and foremost, if you want to have multiple applications running on a single server that all share port 80 and port 443 you can't run Kestrel directly. Kestrel doesn't support host header routing which is required to allow multiple port 80 bindings on a single IP address. Without IIS (or http.sys actually) you currently can't do this using Kestrel alone (and I think this is not planned either).

The AspNetCoreModule running through IIS also provides the necessary process management to ensure that your application gets loaded on the first access, ensures that it stays up and running and is restarted if it crashes. The AspNetCoreModule provides the required process management to ensure that your AspNetCore application is always available even after a crash.

It's also a good idea to run secure SSL requests through IIS proper by setting up certificates through the IIS certificate store and letting IIS handle the SSL authentication. The backplane HTTP request from IIS can then simply fire a non-secure HTTP request to your application. This means only a the front end IIS server needs a certificate even if you have multiple servers on the backplane serving the actual HTTP content.

IIS can also provide static file serving, gzip compression of static content, static file caching, Url Rewriting and a host of other features that IIS provides natively. IIS is really good and efficient at processing non-application requests, so it's worthwhile to take advantage of that. You can let IIS handle the tasks that it's really good at, and leave the dynamic tasks to pass through to your ASP.NET Core application.

The bottom line for all of this is if you are hosting on Windows you'll want to use IIS and the AspNetCoreModule.

How to Publish ASP.NET Core in IIS

In order to run an application with IIS you have to first publish it. There are two ways to that you can do this today:

1. Use dotnet publish

Using dotnet publish builds your application and copies a runnable, self-contained version of the project to a new location on disk. You specify an output folder where all the files are published. This is not so different from classic ASP.NET which ran Web sites out of temp folders. With ASP.NET Core you explicitly publish an application into a location of your choice - the files are no longer hidden away and magically copied around.

A typical publish command may look like this:

dotnet publish
      --framework netcoreapp1.0
      --output "c:\temp\AlbumViewerWeb"
      --configuration Release

If you open this folder you'll find that it contains your original application structure plus all the nuget dependency assemblies dumped into the root folder:

Once you've published your application and you've moved it to your server (via FTP or other mechanism) we can then hook up IIS to the folder.

After that, please just make sure you setup .NET Runtime to No Managed Code as shown above.

And that's really all that needs to happen. You should be able to now navigate to your site or Virtual and the application just runs.

You can now take this locally deployed Web site, copy it to a Web Server (via FTP or direct file copy or other publishing solution), set up a Site or Virtual and you are off to the races.

2. Publish Using Visual Studio

The dotnet publish step works to copy the entire project to a folder, but it doesn't actually publish your project to a Web site (currently - this is likely coming at a later point).

In order to get incremental publishing to work, which is really quite crucial for ASP.NET Core applications because there are so many dependencies, you need to use MsDeploy which is available as part of Visual Studio's Web Publishing features.

Currently the Visual Studio Tooling UI is very incomplete, but the underlying functionality is supported. I'll point out a few tweaks that you can use to get this to work today.

When you go into Visual Studio in the RC2 Web tooling and the Publish dialog, you'll find that you can't create a publish profile that points at IIS. There are options for file and Azure publishing but there's no way through the UI to create a new Web site publish.

However, you can cheat by creating your own .pubxml file and putting it into the \Properties\PublishProfilesfolder in your project.

To create a 'manual profile' in your ASP.NET Core Web project:

  • Create a folder \Properties\PublishProfiles
  • Create a file <MyProfile>.pubxml

You can copy an existing .pubxml from a non-ASP.NET Core project or create one. Here's an example of a profile that works with IIS:

<Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
  <PropertyGroup>
    <WebPublishMethod>MSDeploy</WebPublishMethod>
    <LastUsedBuildConfiguration>Release</LastUsedBuildConfiguration>
    <LastUsedPlatform>Any CPU</LastUsedPlatform>
    <SiteUrlToLaunchAfterPublish>http://samples.west-wind.com/AlbumViewerCore/index.html</SiteUrlToLaunchAfterPublish>
    <LaunchSiteAfterPublish>True</LaunchSiteAfterPublish>
    <ExcludeApp_Data>False</ExcludeApp_Data>
    <PublishFramework>netcoreapp1.0</PublishFramework>
    <UsePowerShell>True</UsePowerShell>
    <EnableMSDeployAppOffline>True</EnableMSDeployAppOffline>
    <MSDeployServiceURL>https://publish.west-wind.com</MSDeployServiceURL>
    <DeployIisAppPath>samples site/albumviewercore</DeployIisAppPath>
    <RemoteSitePhysicalPath />
    <SkipExtraFilesOnServer>True</SkipExtraFilesOnServer>
    <MSDeployPublishMethod>RemoteAgent</MSDeployPublishMethod>
    <EnableMSDeployBackup>False</EnableMSDeployBackup>
    <UserName>username</UserName>
    <_SavePWD>True</_SavePWD>
    <ADUsesOwinOrOpenIdConnect>False</ADUsesOwinOrOpenIdConnect>
    <AuthType>NTLM</AuthType>
  </PropertyGroup>
</Project>

Once you've created a .pubxml file you can now open the publish dialog in Visual Studio with this Profile selected:

At this point you should be able to publish your site to IIS on a remote server and use incremental updates with your content.

#And it's a Wrap Currently IIS hosting and publishing is not particularly well documented and there are some rough edges around the publishing process. Microsoft knows of these issues and this will get fixed by RTM of ASP.NET Core.

In the meantime I hope this post has provided the information you need to understand how IIS hosting works and a few tweaks that let you use the publishing tools available to get your IIS applications running on your Windows Server.



About HostForLIFE.eu

HostForLIFE.eu is European Windows Hosting Provider which focuses on Windows Platform only. We deliver on-demand hosting solutions including Shared hosting, Reseller Hosting, Cloud Hosting, Dedicated Servers, and IT as a Service for companies of all sizes.

We have offered the latest Windows 2016 Hosting, ASP.NET Core 2.2.1 Hosting, ASP.NET MVC 6 Hosting and SQL 2017 Hosting.


Tag cloud

Sign in