
October 20, 2025 07:44 by
Peter
With generative AI's explosive growth, developers are no longer constrained to static business logic. The ability to build, summarize, explain, and even dynamically generate code or SQL queries has been added to applications. Generative AI APIs (such as Hugging Face, Azure OpenAI, or OpenAI) with.NET 8 can be combined to create intelligent microservices that can generate and comprehend natural language. Learn how to create a microservice driven by generative AI in this tutorial by utilizing the OpenAI GPT API and.NET 8 Minimal APIs.

Step 1. Create a New .NET 8 Web API Project
In your terminal or command prompt:
dotnet new webapi -n GenerativeAIMicroservice
cd GenerativeAIMicroservice
Step 2. Clean Up the Template
Remove default controllers and WeatherForecast examples.
We’ll use a Minimal API style for simplicity.
Step 3. Add Dependencies
Install the following NuGet packages:
dotnet add package OpenAI_API
dotnet add package Newtonsoft.Json
These allow communication with the OpenAI GPT API and handle JSON serialization.
Step 4. Create the AI Service
Create a new file: Services/AiService.cs
using OpenAI_API;
using System.Threading.Tasks;
namespace GenerativeAIMicroservice.Services
{
public class AiService
{
private readonly OpenAIAPI _api;
public AiService(string apiKey)
{
_api = new OpenAIAPI(apiKey);
}
public async Task<string> GenerateTextAsync(string prompt)
{
var result = await _api.Completions.GetCompletion(prompt);
return result;
}
}
}
This service will handle all Generative API communication.
Step 5. Create the Minimal API Endpoint
In your Program.cs file, add:
using GenerativeAIMicroservice.Services;
var builder = WebApplication.CreateBuilder(args);
builder.Services.AddSingleton(new AiService("sk-your-openai-api-key")); // Replace with your key
var app = builder.Build();
app.MapPost("/api/generate", async (AiService aiService, PromptRequest request) =>
{
if (string.IsNullOrEmpty(request.Prompt))
return Results.BadRequest("Prompt is required.");
var response = await aiService.GenerateTextAsync(request.Prompt);
return Results.Ok(new { Output = response });
});
app.Run();
record PromptRequest(string Prompt);
Example Request
You can now test your Generative API microservice using Postman or curl.
POST Request
URL:
https://localhost:5001/api/generate
Body (JSON):
{"Prompt": "Write a C# function to reverse a string"}
Example Response
{"Output": "public string ReverseString(string s) { char[] arr = s.ToCharArray(); Array.Reverse(arr); return new string(arr); }"}
Step 6. Containerize with Docker (Optional)
To make it cloud-ready, create a Dockerfile:
FROM mcr.microsoft.com/dotnet/aspnet:8.0 AS base
WORKDIR /app
FROM mcr.microsoft.com/dotnet/sdk:8.0 AS build
WORKDIR /src
COPY . .
RUN dotnet publish -c Release -o /app/publish
FROM base AS final
WORKDIR /app
COPY --from=build /app/publish .
ENTRYPOINT ["dotnet", "GenerativeAIMicroservice.dll"]
Then run:
docker build -t generative-ai-service .
docker run -p 8080:80 generative-ai-service
Step 7. Real-World Use Cases
Scenario | Description |
Code Assistant
|
Generate code snippets based on developer prompts
|
Chatbot Backend
|
Provide intelligent responses in chat systems
|
SQL Generator
|
Convert text prompts into database queries
|
Content Creation
|
Auto-generate text, descriptions, and blogs
|
AI Documentation Service
|
Summarize and document APIs automatically
|
Architecture Overview
Client App (UI)
↓
Generative AI Microservice (.NET 8)
↓
OpenAI / Azure OpenAI API
↓
AI-Generated Response
This architecture makes the AI layer modular, secure, and reusable across multiple projects.
Security Considerations
Do not hardcode API keys — use:
dotnet user-secrets set "OpenAIKey" "sk-your-key"
and retrieve it via:
builder.Configuration["OpenAIKey"]
- Limit tokens and rate of calls
- Sanitize user inputs before sending to AI API
- External References
Conclusion
By integrating Generative AI APIs into a .NET 8 microservice, you can bring AI-driven intelligence into any system — whether for content creation, coding automation, or chatbot applications. This architecture is modular, scalable, and ready for enterprise deployment, bridging traditional software engineering with next-generation AI development.